2019《家电科技》学术年会 (ASTC2019)

微通道扁管在冷柜系统中的应用研究及进展

刘迎文 博士 教授

先进热管理与能效方案研究组

Advanced Thermal Management & Energy Efficiency Solutions Team

2019.11 安徽 合肥

一、应用效果浅析

- **欧** 研究背景及意义
- @ 微通道换热器的应用效果
- @ 微通道扁管冰柜性能分析

1研究背景和意义

行业数据显示近几年冷柜产业呈现递增趋势,2017年度全国冷柜年产量达到2356.1万台;但是,冷柜的能效要求和时长准入门槛与而越来越高。



开展冷柜节能研究具有巨大的经济效益,提质增效的节能技术研究成为行业热点。

兀

1研究背景和意义

压缩机:压缩机是冷柜的心脏,它使冷柜的制冷系统完成连续循环。其功能是将在蒸 发器中吸收外界热量而气化的制冷剂吸入,压缩成高温高压的气体送到冷凝 器。

冷凝器

制冷剂通过冷凝器将热量散发给周围空气中,由高温高压的气体冷凝为低温高压的 液体;

干燥过滤器

- 一、滤除制冷系统中的杂物(如润滑油、金属屑、灰尘等),防止杂物堵塞毛细管 损坏压机:
- 二、吸收制冷系统中的残留水份,防止产生冰堵,减少水份对制冷系统的腐蚀作用。

毛细管

毛细管的作用是节流降压。 制冷剂进入毛细管,因其通道细长受阻,而被节流降压,变为低温低压的液体。

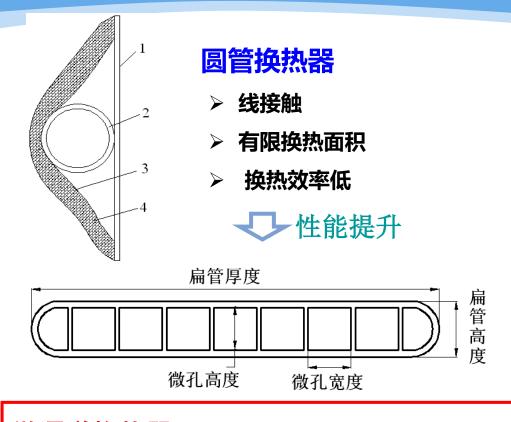
蒸发器

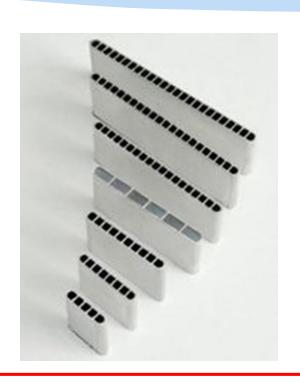
蒸发器的作用是使制冷剂从毛细管进入蒸发器后,因压力降低而迅速蒸发,吸取 柜内食品的热量使柜内食品的温度下降,达到冷冻和冷藏的目的。

冷凝器:

与环境换热向外散热,负荷最大

蒸发器:


快速降温和高能效的关键



开展冷柜制冷系统两器的节能研究 对于实现冷柜节能具有重要的工程 意义和经济价值

1研究背景和意义

微通道换热器:

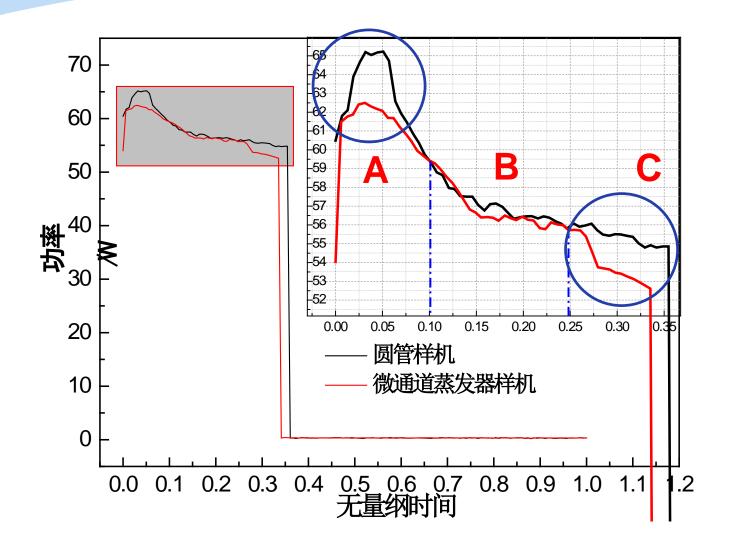
- 紧凑高效、成本低廉,换热效率高、接触热阻小、换热面积大
- 平整接触面有利于增加换热器管材与冷柜壁板/箱胆的换热面积

2 微通道换热器的应用效果

微通道蒸发器

名称	圆管样机	微通道蒸发器样机
冷库/°C	-18	-18
功率/W	57.83	57.11 1.25 %
运行率/%	36.26	34.74 4.19%
日耗电量 / kW·h/24h	0.5310	0.5053 4.84%

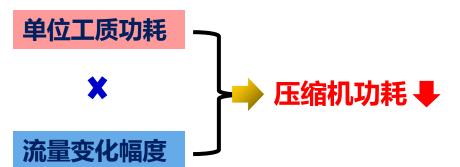
微通道冷凝器


型号	传热长度变化	耗电量/kW·h/24h
原管样机	100%	0.543
微通样机1	85.71%	0.553
微通样机2	71.43%	0.584
微通样机3	57.14% 👆 4	2.86% 0.537 1.1%

微通道蒸发器具有较大节能优势!

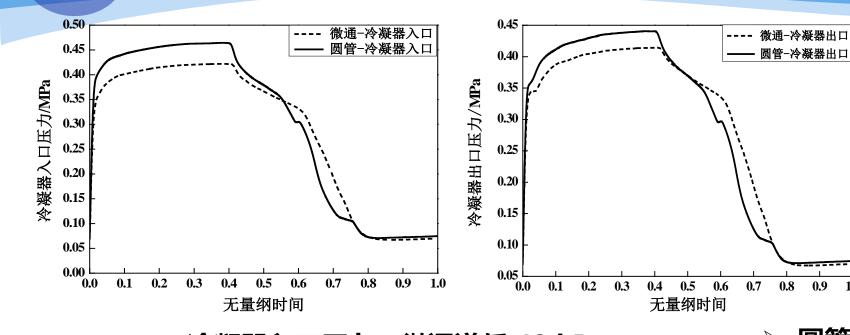
微通道冷凝器在节材降耗方面可行性较好!

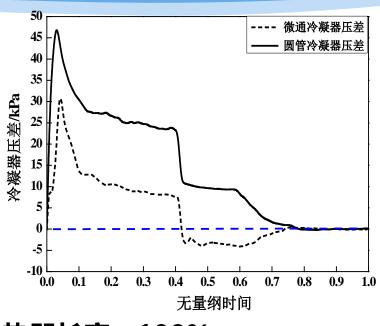
3 微通道扁管冰柜性能分析—功率



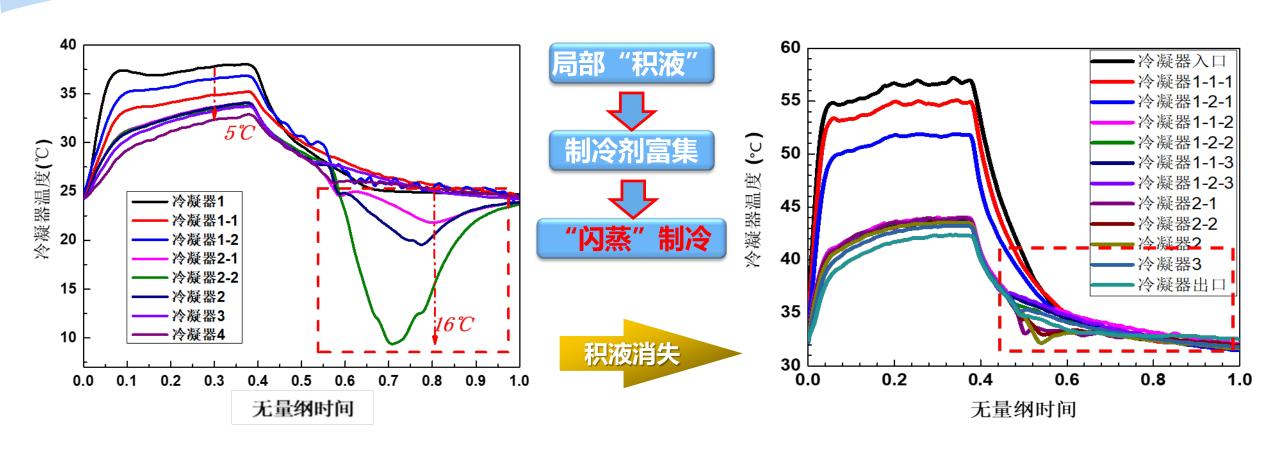
微通道样机功率

≻开机初期,功率偏低约3W


>开机中期:相当


>开机末期:功率偏低约2W

3微通道扁管冰柜性能分析—压力


- ▶冷凝器入口压力: 微通道低 42 kPa
- ▶冷凝器出口压力: 微通道低 28 kPa
- ▶冷凝器压降: 微通道 10 kPa; 圆管 25 kPa

- ▶ 圆管换热器长度: 100%
- 微通道换热器长度: 71.43%
- > 单位长度下圆管冷凝器压降更大

串并联结构前部分为双流路结构,实现了制冷剂分流作用:制冷剂流速较小、压降较小

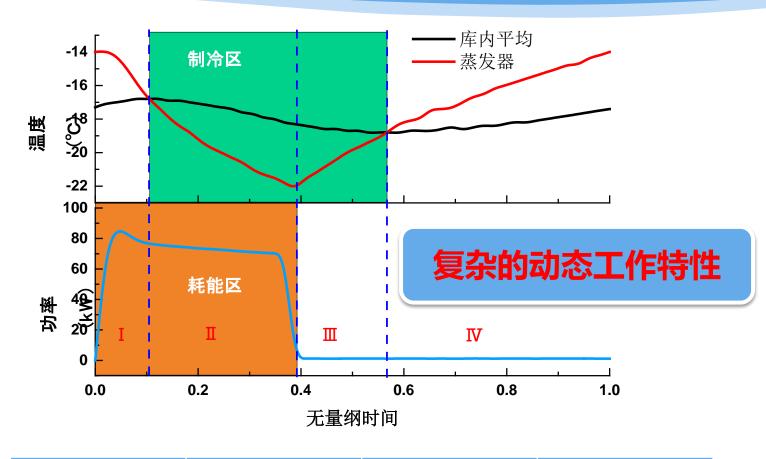
3微通道扁管冰柜性能分析—制冷剂富集现象

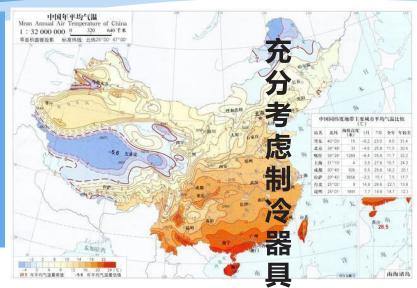
结构改进前

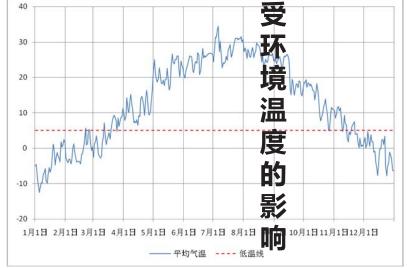
结构改进后

目录

- ❷ 引 言
- **⑥** 启停过程温压特性
- **圆** 制冷剂迁移特性
- **制冷剂的变负荷分布特性**


1引言


I	п	ш	IV
冷媒迁移区	有效制冷区	附加制冷区	冷媒平衡区



1引言

年 平均气温

北京 Ε 平均气 温 冬

GB/T 8059-2016 家用和类似用途制冷器具 耗电量测试方法的变化

16 耗电量试验

16.1 一般要求

本试验的目的是测量器具在规定试验条件下的耗电量

16.2 试验程序

16.2.1 环境温度

耗电量测试应在环境温度 16 ℃和 32 ℃,相对湿度 45%~75%条件下分别进行测试。

※环境温度改变

旧国标: 25℃单环境温度

新国标: 16℃和32℃双环境温度

年耗电量来代替原来的日耗电量

机遇

挑战

开展变环温下冷柜制冷系统的热力特性研究,对开发 高能效冷柜具有重要学术价值和工程指导意义

Key Laboratory of Thermo-Fluid Science and Engineering, MOE

1引言

研究现状

研究手段

- > 分布特性研究
- □ 称重法

□ 瞬态 (定负荷)

□ 状态方程

□ 稳态(变负荷)

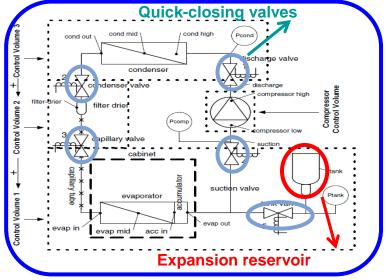
- 冷媒捕捉
- 膨胀过热

无法应对 新国标要求

基于温度特性

(本工作)

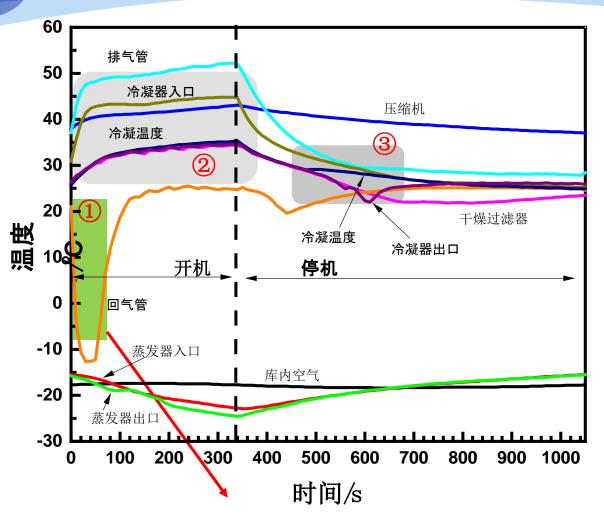

瞬态 & 变负荷


简单

快速

有效

关键技术: 制冷剂分布与迁移特性快速预测

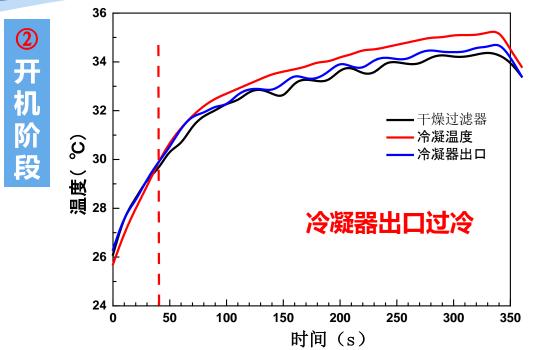


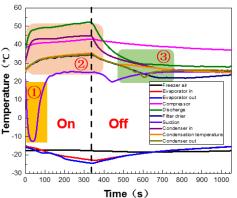
2 启停过程温度特性及制冷剂分布

旧国标: 25℃环境温度

- ▶ 开机阶段(0~340s)
- 制冷剂重新分配
- 蒸发器 → 冷凝器
- > 停机阶段(340~1050s)
- 制冷剂迁移过程
- 冷凝器 → 蒸发器
- 压缩机流量迅速减小,毛细管流量变化较慢
- 系统内压力平衡,蒸发器内储存大量制冷剂

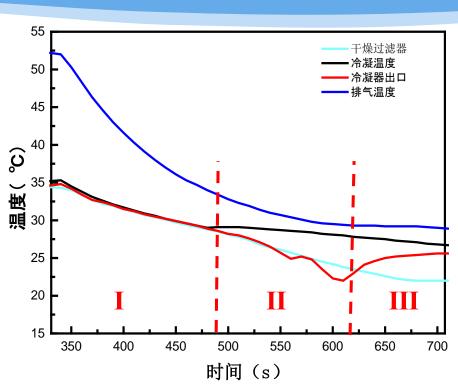
D 回气温度迅速下降


液态制冷剂出流,制冷剂"闪蒸"降温



2 启停过程温度特性及制冷剂分布

3

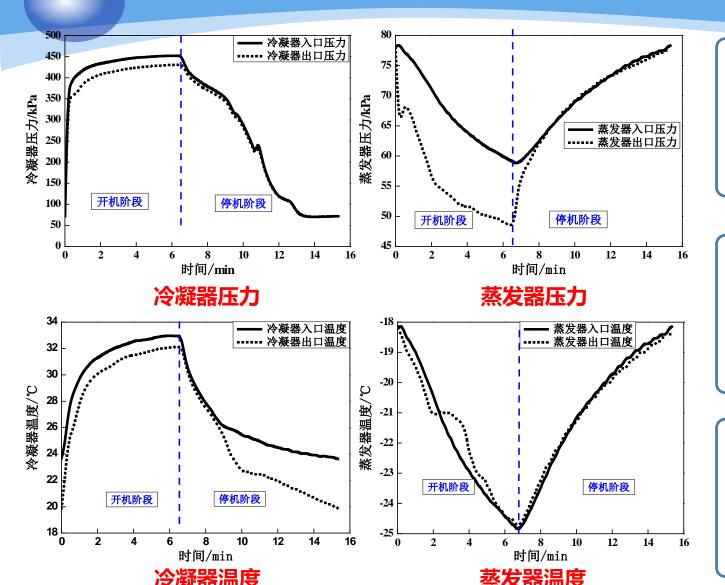

旧国标: 25℃环境温度

> 毛细管入口

- "液封"建立需要时间
- > 冷凝器出口状态变化:
 - 过热 → 过冷

>冷凝器温度偏离冷凝温度

相变过程逆转 液体全部蒸发


> 干燥过滤器温度偏离冷凝温度

"液封"被破坏 多孔结构易积液体

2 启停过程压力特性及制冷剂分布

旧国标: 25℃环境温度

启动证

>流量:压缩机>毛细管

≻制冷剂向冷凝器迁移

≻冷凝器:压力/温度升高

>蒸发器:压力/温度降低

启动中

≻流量:压缩机↓;毛细管↑

≻冷凝器: 压力/温度升高

>蒸发器: 压力下降导致入口段的

液态制冷剂不断闪发并向出口迁移

启动后期

▶流量逐渐平衡

- ▶冷凝器温度和压力相对稳定
- >蒸发器有效制冷并制冷量达到最大

微通道样机

2 启停周期内能效分析

旧国标: 25℃环境温度

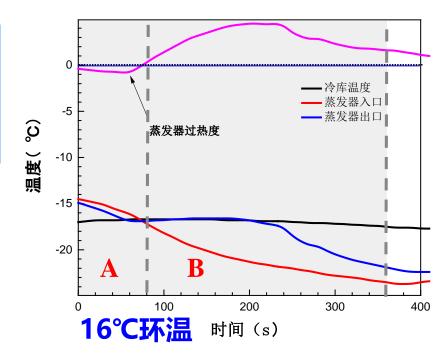
		65 ₁					-61		. 10	TI 656: V	V ARA	ᄪᄹᆟᄽ	Z W	
		60					-60		<u>را</u> —	可目人	令(疑:	器制冷	不到	
		55	<u> </u>		1 -		-59	\						
		50	_		U-□-□-(~~~~	1 7	1						
		45	_			1	56	þ						-
		40	_			1	_55 _54		7					
į	∑∲/₩	35	_			1	-53	Α	. ט					
ļ.	∯	30	_				-52				1			
7	1	25	_				-51 -50				 	В		-
		20	_				0	1	2	3	4	5	6	7
		15	_				1							-
		10	-				1							-
		5	_				1							-
		0					~~	 -						_
		()	2	4	6	:	8	10		12	14		16
						ŀ	时间]/mir	1					
		70	- □			-70					20L	通谱 必	WY HU	7

		时间/min	
70	R	70	—□— 微通道冷凝器
60		-66	
50	-	62	
W 数 30	-	-58 -56	Charles -
景 30	-	-54 A -52	B
20	-	0 1 2 3	4 5 6 7 8 9 10
10	_		
0		<u></u>	20 25 20
	0 5 1	10 15 时间/min	20 25 30

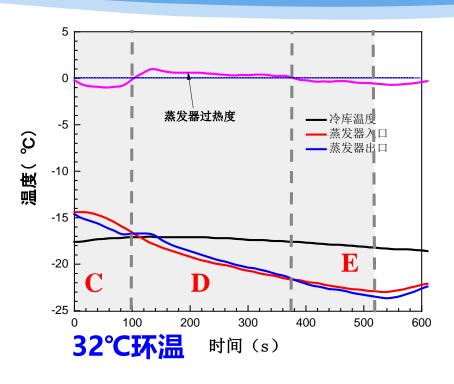
开机阶段	时间长度	平均功率	单周期能耗	能耗占比
开机阶段	/min	/W	/kW	/%
A阶段	3	56.0	2.33	42.83
B阶段	3.5	51.9	3.11	57.17

A阶段:制冷剂重新分配

B阶段: 系统有效制冷


 开机阶段	时间长度	平均功率	单周期能耗	能耗占比
フログ LPJI 校 	/min	/W	/kW	/%
A阶段	4	62.21	3.48	40.98
B阶段	4.5	54.94	5.01	59.02

3制冷剂迁移特性

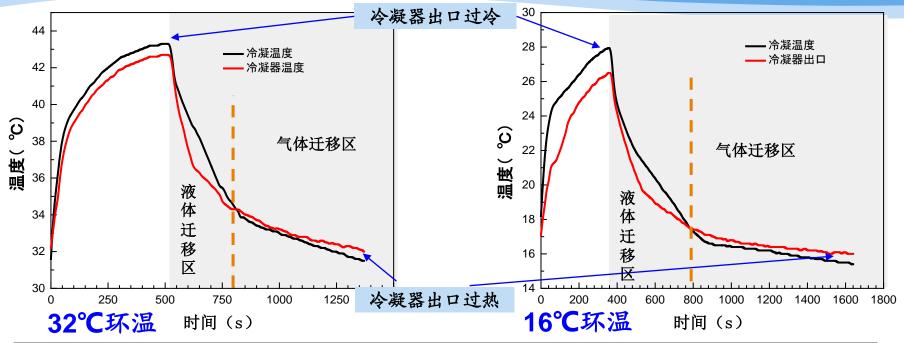

新国标: 双环境温度

口 毛细管初始流量极小

- **▶ 16°C环温(360s)**
 - A:80s, 无冷量输出
 - B:280s, 过热 蒸汽扩散至出口
 - •压机启动, "段塞流"实现快速分配

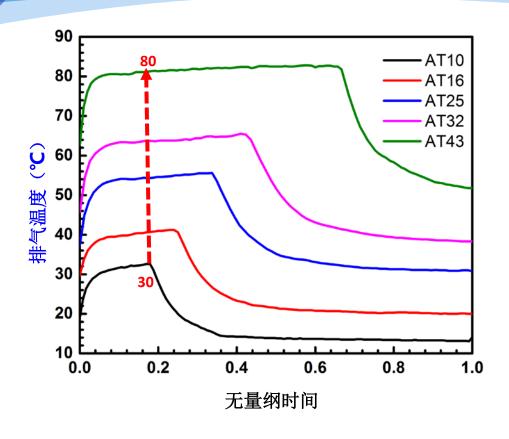
口 制冷剂由蒸发器经压缩机实现再分配

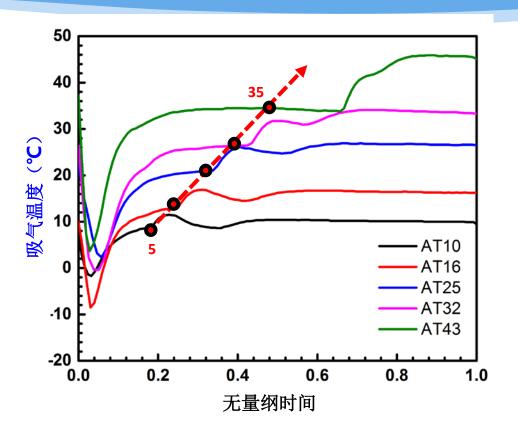
- **▶ 32°C环温**(520s, 开机更长)
 - C:100s, 冷量损失更大
 - D:280s & E:140s


"段塞流"不易发生 (蒸发器饱和工作状态)

3制冷剂迁移特性

新国标:双环境温度

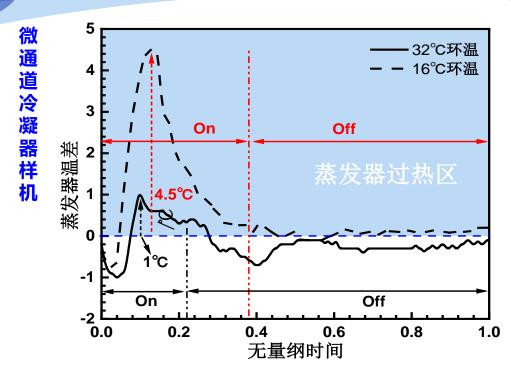


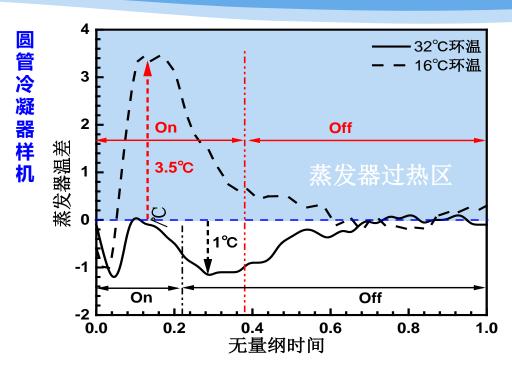

_		开机过程			停机过程		运行率
	阶段	时长/s	相对时长	阶段	时长/s	相对时长	/%
22 0GITVH	无冷量输出	100	7.29 %	液体迁移	290	21.17 %	27.060/
32 ℃环温	有效制冷	420	30.66 %	气相迁移	560	40.88 %	37.96%
1.6.9CIT测	无冷量输出	80	4.88 %	液体迁移	420	25.61 %	21.050/
16℃环温	有效制冷	280	17.07 %	气相迁移	860	52.44 %	21.95%

高环温下制冷剂迁移特性是冷柜系统节能研究的关键

多环境温度

- 口 环温升高,排气/吸气温度均上升
- □ 高压侧温度增幅 >> 低压侧温度增幅


高环温 大压比



迁移驱动力增大

过热水平对比 (变负荷)

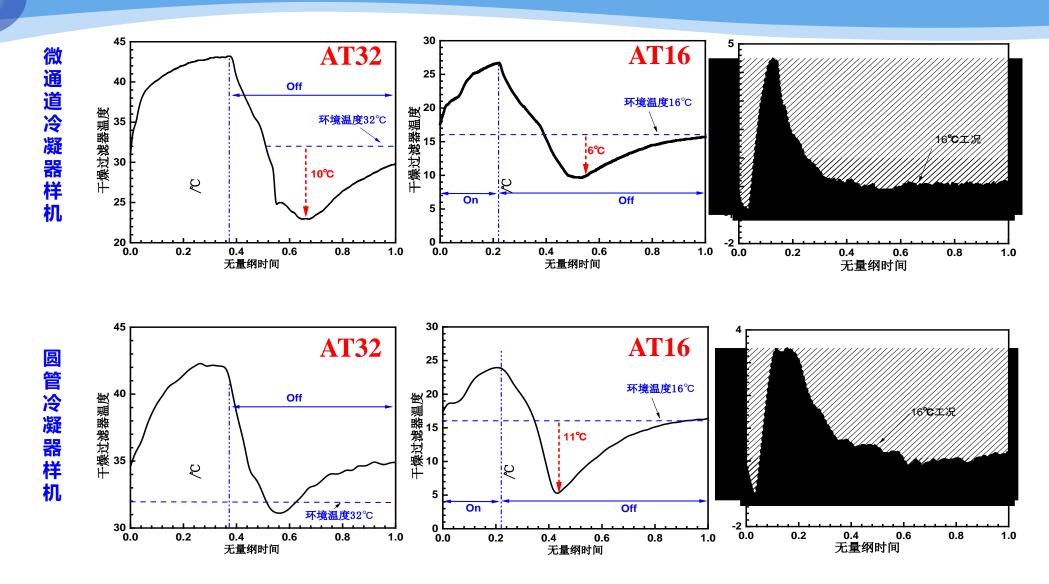
▶32 ℃环温 鲜有过热

▶ 16℃环温 均有明显过热

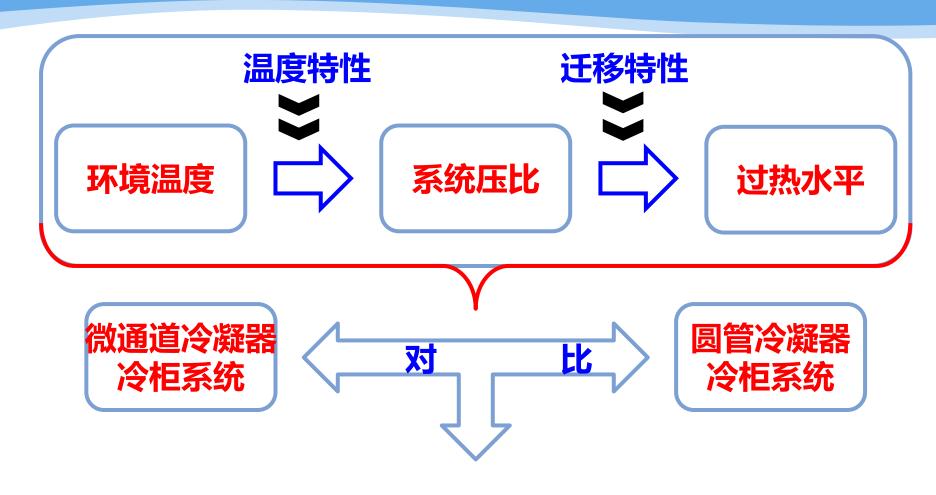
环温影响 高压侧>低压侧

低环温下 系统压比减小

制冷剂迁移动力 (压比) 减弱


冷凝器中积液 蒸发器制冷剂不足

蒸发器过热 出口>入口


低环温下蒸发器内的制冷剂贮量不足

采用微通道冷凝器的制冷系统对环境温度的敏感性较低

进展小结

进展小结

微通道扁管的应用效果:

- ▶微通道扁管蒸发器样机日耗电量较圆管蒸发器样机降低了4.84%
- ▶微通道扁管冷凝器样机日耗电量较圆管冷凝器样机降低了1.1%
- >冷凝器所用管材长度相较圆管冷凝器减少了42.86%

圆管与微通道冷柜启停周期内的压力特性对比:

- >单位长度下, 微通道冷凝器压降小于圆管冷凝器
- >蒸发和冷凝压力低于圆管冷凝器系统

变环境温度下,微通道扁管换热器的自适应能力:

> 由于"富集制冷剂"固有特性,微通道冷凝器制冷系统对环境温度的敏感性较低

感谢海尔集团和《家电科技》,谢谢聆听!

